Installation Of A Solar Panel

ABSTRACT

Sunlight is a form of radiant energy that travels to the earth as electromagnetic waves. In reality, the light we see is just a small part of the energy we receive from the Sun. The radiant energy from the Sun covers the full breadth of the electromagnetic spectrum. Using solar technology, we are able to “capture” the Sun’s radiant energy and convert it to either heat or electricity. This sun is captured using solar panel, which is a set of solar photovoltaic (PV) modules electrically connected and mounted on a supporting structure. A PV module is a packaged, connected assembly of solar cells. Solar panels can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Each module is rated by its DC output power under standard test conditions (STC). This work describes the procedure of solar panel installation.

TABLE OF CONTENTS

 TITLE PAGE

APPROVAL PAGE

DEDICATION

ACKNOWELDGEMENT

ABSTRACT

TABLE OF CONTENT

CHAPTER ONE

INTRODUCTION

  • BACKGROUND OF THE PROJECT
  • PROBLEM STATEMENT
  • AIM OF THE PROJECT
  • OBJECTIVE OF THE PROJECT
  • SIGNIFICANCE OF THE PROJECT
  • ADVANTAGES OF SOLAR POWER
  • APPLICATIONS OF SOLAR ENERGY
  • LIMITATION OF THE PROJECT
  • ADVANTAGES AND DISADVANTAGES OF SOLAR PANELS

CHAPTER TWO

LITERATURE REVIEW

2.1      OVERVIEW OF THE STUDY

2.2      OVERVIEW OF SOLAR ENERGY

2.3      MAXIMIUM ANGLE OF INCLINATION

2.4      SOLAR PANEL

2.5      HISTORICAL BACKGROUND OF SOLAR PANEL

2.6      REVIEW OF DIFFERENT PHOTOVOLTAIC MOUNTING SYSTEM

CHAPTER THREE

3.0      METHODOLOGY

3.1      REQUIRED TOOLS

3.2      SOLAR SYSTEM COMPONENTS

3.3      SOLAR PANEL INSTALLATION PROCESS

3.5      INSTALLATION CALCULATION

CHAPTER FOUR

4.1      TESTING OF SOLAR PANELS

4.2      SOLAR PANEL MAINTENANCE

CHAPTER FIVE

5.0      CONCLUSION AND RCOMMENDATION

  • CONCLUSION
  • RECOMMENDATION

5.3     REFERENCES

CHAPTER ONE

  • INTRODUCTION

solar inverter converts direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical balance of system (BOS)–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar power inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

The solar panel used in solar inverter produces direct electricity with the help of electrons that are moving from negative to positive direction. Most of the appliances that we use at home work on alternative current. This AC is created by the constant back and forth of the electrons from negative to positive. In AC electricity the voltage can be adjusted according to the use of the appliance.  As solar panels only produce Direct current the solar inverter is used to convert the DC to AC.

An inverter produces square waves or a sine wave which can be used for running lights, televisions, lights, motors etc. However these inverters also produce harmonic distortion.

1.1                                         BACKGROUND OF THE PROJECT

Solar technology isn’t new. Its history spans from the 7th Century B.C. to today. We started out concentrating the sun’s heat with glass and mirrors to light fires. Today, we have everything from solar-powered buildings to solar-powered vehicles. Here you can learn more about the milestones in the historical development of solar technology, century by century, and year by year. You can also glimpse the future. From the 3rd Century BC when Archimedes fought off Roman ships by concentrating the suns rays at them with brass shields (they burst into flame), through work by some of the best known figures in the history of science, harnessing the power of the sun has long been a goal of human innovation. Let’s look at some of the highlights:

In 1767 Swiss physicist, alpine explorer, and aristocrat Horace de Saussure is credited with inventing the first working solar oven, amongst other discoveries. Constructed from 5 layers of glass and measuring around 12 inches across, the oven worked by allowing light to pass through the glass before being absorbed by the black lining and turned into heat. The heat is then reflected by the glass, therefore heating the space inside the box up to 87.5 degrees Celsius.

Also in 1839 Edmond Bequerel, born in Paris in 1820, discovered that when two electrodes were placed in an electrolyte (electricity-conducting solution), a voltage developed when light fell upon the electrolyte. The basic principles of solar power had been uncovered.

Many people using solar power these days which prove that its necessity has been increased in the current years. A Solar inverter is similar to a normal electric inverter but uses the energy of the Sun, that is, Solar energy. A solar inverter helps in converting the direct current into alternate current with the help of solar power. Direct power is that power which runs in one direction inside the circuit and helps in supplying current when there is no electricity. Direct currents are used for small appliance like mobile e phones, MP3 players, IPod etc. where there is power stored in the form of battery. In case of alternative current it is the power that runs back and forth inside the circuit. The alternate power is generally used for house hold appliances. A solar inverter helps devices that run on DC power to run in AC power so that the user makes use of the AC power. If you are thinking why to use solar inverter instead of the normal electric one then it is because the solar one makes use of the solar energy which is available in abundant from the Sun and is clean and pollution free.

Solar inverters are also called as photovoltaic solar inverters. These devices can help you save lot of money.  The small-scale grid  one have just two components i.e. the panels and inverter while  the off grid systems are complicated and consists of batteries which allows users to use appliances during the night when there is no Sunlight available.  The solar panel and the batteries that are placed on rooftops attract Sun rays and then convert the Sunlight into electricity. The batteries too grab the extra electricity so that it can then be used to run appliances at night.

1.2                                                  PROBLEM STATEMENT

As a result of continuous power failure and fluctuation in power supply by Power Holding Company of Nigeria (PHCN), sensitive appliances and system are affected by interruption power supply and also the blackout also affect human generally in that it takes away our happiness. Then, this project is to provide a back-up and reliable power supply of 1000W from a renewable energy source (solar panel) to power some selected home appliances such as computers, television set, lighting systems.

1.3                                                   AIM OF THE PROJECT

The objective of this project is to describe the procedures on how to install solar energy.

1.4                                            OBJECTIVES OF THE PROJECT

At the end of this work, the student involved shall be able to:

  1. understand how solar energy works
  2. understand to install solar panel
  • Understand safety issues that must be understood before you consider installing solar panels or PV system components onto your home.

1.5                                           SIGNIFICANCE OF THE STUDY

Currently solar panels are used to provide hot water (solar thermal) and heating to homes and small ensembles. You tried to build solar power plants, using turbines, convert the stored heat into electricity, but these experiments have failed substantially to the low yield of these power relationships with high operating costs and the interruption of electricity supply (but see As for the panels that the concentration of last generation). The photovoltaic panels are used mainly to power devices away from electrical networks (space probes, the phone repeaters in the mountains, etc.) or with reduced energy requirements so that a connection to the grid would be uneconomical (light road signs, parking meters, etc.) and improper from an organizational perspective. Obviously, these devices must be equipped with batteries that can accumulate the electricity produced in excess during the day to power the equipment at night and during cloudy periods.

With current technology photovoltaic panels are also sensitive to infrared radiation (invisible) of solar radiation and therefore produce power even in case of cloudy weather and rain. The amount of energy delivered is variable and unpredictable, this discontinuity makes it difficult to meet demand at all times current, less than a production with a wide safety margin above the peak annual demand.

1.6                                        ADVANTAGES OF SOLAR POWER

The energy and heat from the sun is free and unlimited.
Solar power is non-polluting. Solar power usage does not emit any greenhouse gases or harmful waste.
Solar power is perfect and saving for power generation in remote areas or where the cost of expansion utility grid is high.
Solar power is versatile. It can be used for low-power purpose as well as larger ones – from hand-held calculators, watches, and solar powered garden lights to water heaters, cars, buildings and satellites.
Solar power system requires very little maintenance and last for many years.

 

1.7                                       APPLICATIONS OF SOLAR ENERGY

Daylighting
The oldest solar application is day-lighting. Day-lighting system collects and distributes sunlight to provide effective internal illumination inside buildings. Day-lighting design implies careful selection of window types, sizes and orientation may be considered as well. There are also other architectural features such as light shelves and even active sun tracking system which combine with fiber optics or mirrors to provide light to interior of large buildings.
  • Solar Thermal

Solar thermal technologies can be used for water heating in homes or commercial and space heating or space cooling for buildings. Solar water heating systems use different type of collectors to gather and store the solar energy for heating water used in residential, commercial and industrial applications. For space heating and cooling in warm temperature region, the thermal mass materials is needed to keep building cool by absorbing solar energy during a day and radiate stored heat to cooler atmosphere at night. However they can be used in cold temperature areas to maintain warmth as well.

  • Solar Electric Power Generation

Solar energy can be directly converted to electricity by photovoltaic cells. Solar photovoltaic (PV) systems provide electricity to home or business for lighting, TV, fan, computer, stereo, refrigerator, water pump or livestock feeders, without connection to utility grid. They are also used to power watches, calculators and sign lights.

1.8                                           LIMITATION OF THE PROJECT

The estimated lifetime of the solar panels is about 30 years. The main defects of these systems are the cost of the panels and the storage of energy.

The second obvious problem with this kind of system is that energy is produced only during daylight hours and is not suitable for any situation, being a form of energy electricity hardly accumulate in large quantities.

During the installation, is not always easy to track or position the panel to the right place that will attract sun rays.

1.9                ADVANTAGES AND DISADVANTAGES OF SOLAR ENERGY

Advantages

Solar panels are clean – while generating electricity from sunlight, solar panels produce virtually no pollution, whereas burning fossil fuels releases large quantities of toxic gases into the atmosphere.

For the consumer, solar panels can free the individual from reliance on the power grid and the monopolistic energy supplier. Once you make the initial investment in hardware, you will have free electricity for years to come.

Fossil Fuels are limited – Although fossil fuel reserves are expected to run dry within the next century, solar power is clean, abundant, and will remain a renewable resource that can meet all of Earth’s energy needs for billions of years to come.

DISADVANTAGES SOLAR ENERGY

Admittedly, while solar power is certainly much cleaner than the burning of fossil fuels, and moderately cleaner than the production of nuclear power, solar panels installation are very pricey and in many years demand for solar panels exceeds supply. When we ask ourselves – why are solar panels necessary, we must consider the costs of production as well as the costs of using much more harmful means of producing electricity. Solar Panels also require more square yardage per kilowatt for the power-generating facility than fossil fuel power plants or nuclear power.

1.10                                              DEFINITION OF TERMS

  1. Inverter unit: This unit converts a DC voltage into AC voltage with the help of the inverter
  2. Automatic Control Unit: This provides all the required control needed to meet up the objective of the whole system
  3. Battery Unit: This is a secondary cell unit, capable of storing enough DC voltage from either sun or AC main, of which is later converted to AC voltage.
APA

Installation Of A Solar Panel. (n.d.). UniTopics. https://www.unitopics.com/project/material/installation-of-a-solar-panel/

MLA

“Installation Of A Solar Panel.” UniTopics, https://www.unitopics.com/project/material/installation-of-a-solar-panel/. Accessed 22 November 2024.

Chicago

“Installation Of A Solar Panel.” UniTopics, Accessed November 22, 2024. https://www.unitopics.com/project/material/installation-of-a-solar-panel/

WORK DETAILS

Here’s a typical structure for Installation Of A Solar Panel research projects:

  • The title page of Installation Of A Solar Panel should include the project title, your name, institution, and date.
  • The abstract of Installation Of A Solar Panel should be a summary of around 150-250 words and should highlight the main objectives, methods, results, and conclusions.
  • The introduction of Installation Of A Solar Panel should provide the background information, outline the research problem, and state the objectives and significance of the study.
  • Review existing research related to Installation Of A Solar Panel, identifying gaps the study aims to fill.
  • The methodology section of Installation Of A Solar Panel should describe the research design, data collection methods, and analytical techniques used.
  • Present the findings of the Installation Of A Solar Panel research study using tables, charts, and graphs to illustrate key points.
  • Interpret Installation Of A Solar Panel results, discussing their implications, limitations, and potential areas for future research.
  • Summarize the main findings of the Installation Of A Solar Panel study and restate its significance.
  • List all the sources you cited in Installation Of A Solar Panel project, following a specific citation style (e.g., APA, MLA, Chicago).