TABLE OF CONTENT
COVER PAGE
APPROVAL PAGE
DEDICATION
ACKNOWLEDGEMENT
TABLE OF CONTENT
- INTRODUCTION
- BREIEF HISTORY AND HISTORICAL BACKGROUND
- LITERATURE REVIEW
- OBJECTIVES OF THE PRESENT WORK
- SCOPE OF ELECTRICC ARC WELDING MACHINE
CHAPTER TWO
2.0 ANALYSIS OF ALTERNATE METHOD OF WELDING AND CHOICE OF BEST METHOD
2.1 ALTERNATIVES TO ELECTRIC ARC WELDING MACHINE
2.1.1 JOINING PROCESS
2.1.2 GAS WELDING
2.1.3 SOLDERING
2.1.4 BRAZING
CHAPTER THREE
METHODOLOGY
3.0 GENERAL DESCRIPTION AND ITS WORKING PRINCIPLE
3.1 WORKING PRINCIPLE OF THE WELDING MACHINE
CHAPTER FOUR
4.0 DESIGN CALCULATION
4.1 WINDING DESIGN
4.2 INSULATION PROCEDURE
4.3 POWER SOURCE
4.4 ELECTRODE TYPES
4.4.1 TYPES OF ELECTRODE AND THEIR USES
4.4.2 ELECTORDE STADARD GAUGE
CHAPTER FIVE
5.0 MATERIAL SELECTION AND FABRICATION OF WELDING MACHINE
5.1 FABRICATION OF WELDING MACHINE
5.2 TRANSFORMER
5.2.1 WORKING PRINCIPLE OF TRANSFORMER
5.3 USEFUL AND LEAKAGE FLUXES IN A TRANSFORMER
5.4 METHODS OF REDUCING LEAKAGE FLUX
5.5 TRANSFORMER FABRICATION
5.6 METHOD OF WLDING
5.7 FACTORS OF SUCCESSFUL ARC WELDING
5.8 MAINTENANCE
5.9 THE SAFETY PRECAUTIONS
CHAPTER SIX
6.0 CONCLUSION AND RECOMMENDATION
6.1 CONCLUSION
6.2 PROBLEMS ENCOUNTERED AND RECOMMENDATION
CHAPTER ONE
- INTRODUCTION
In the past with the necessary of metals it always seems impossible to join two metals together with grooving riveting, this idea leads to alternative of finding a lasting solution to the problem. This brought about the idea of a welding machine with a well laminated core and coil wound together to form a high rated transformer which is immersed in a can of oil.
Welding is the most economical and efficient way to join metals permanently. It is the only way of joining two or more pieces of metal permanently to make a single piece. Welding is vital to our economy.
It is even said that over (50%) of the gross nation product of the industries is related to welding in one way or the other. Welding ranks high economy industrial process and involve more science and variable than those involved in any other industrial process.
The electrode is either a rod that simply carried current between the tip of the tong and the work, or a rod or wire that melts and supplies, fill metal to the joint.
The basic arc welding circuit is an alternating current (A.C) or direct current (D.C) power source connected by a “hot” cable to an electrode, when the electrode is positioned close to the work piece, an arc is created across the gap between the metal and the hot cable electrode. An ionized column of gas developed to complete the circuit.
1.1 BREIEF HISTORY AND HISTORICAL BACKGROUND
Arc welding did not come into practice until much later. In 1802, “Vasily Petrov” discovered the continuous electric Arc and subsequently proposed its possible practical applications including welding. The French electrical inventor “Auguste Demeritens” produced first carbon arc touch, patented in 1881, which was successfully used for welding leading in the manufacturer of lead-acid batteries. In 1881-1882 a Russian inventor “Nikolai Bernardo” created the electric arc welding method for steel known as carbon arc welding, using carbon electrode. (Lincoln Electric 1994), the procedure hand book of arc welding, Cleceland Ohiho Lincoln Electric ISBN 99949-25-82-2. The advance in arc welding contacted with the inventor of metal electrode in the late 19th century by a Russian, “Nikolai Slavyanov” 1888 and an American, “C.L coffin”. Around 1900 A.P strotimenger released in Britain a coated metal electrode which gave more stable arc, in 1905 Russian scientist “Vladimir Mitevich” proposed the usage of three phase electric arc for welding.
In 1919 the alternating current welding was invented by “C.J Hoslag” not become popular for another decade. Competing welding process such as resistance welding and oxy-fuel welding were developed during this especially the later, faced stiff competition from arc welding especially after metal coving (known as flux) for the electrode to stabilized the arc and shield the base material from impurities continued to be developed.
The arc welding was not common until during world war I, welding started to be used in ship building in Great Brittan in place of riveted steel plates. The Americans also became more of accepting of the new technology when the process allowed them to repair their ships quickly after a German attack in the New York Harbor at the beginning of the war. Even in the good old days, Nigeria make use of forgoing whereby two pieces of metal are join together by heating them to a high temperature ant then hammering them together (forge welding).
In 1919 the British ship builder “Cammel Laird” started construction of merchant ship, the fillager, with entire welding hill, she was launched in 1921.
During the following decade, further advanced allowed for the welding of reactive such as aluminum and magnesium, this in conjunction with the development in automatic welding, alternating current, flux fed a major expansion of arc welding during the 1930’s and then during world war two after decades of development, was finally perfected in 1941 and gas metal arc welding followed in 1948, allowing for fast welding of non-ferrous material but required more expensive shielding gases. Using a consumable electrode and a carbondioxide atmosphere as shielding gas. It quickly becoming to most popular arc welding process , in 1957. The flux cored arc welding process debuted in which the self-shielded wire automatic equipment, resulting in greatly increased welding speeds. In that same year plastic arc welding was invented. Electro slag welding as released in1958 and was followed by it cousin, electro-gas welding in 1961.
1.2 LITERATURE REVIEW
This write up is fully based on the method and ways of carrying out welding work and construction of the machine. Welding is a fabrication or sculptural process that joins material usually metals or thermoplastics, by causing fusion, which is distinct from the lower temperature metal. Joining techniques such as brazing or soldering which do not melt the base metal. The value of welding as a standard method of joining metal was not fully appreciated before world war one, then because of the need for speed of production in every metal using and metal fabrication industry, the order of welding processes came on their own. During and after world war two, the new welding method were developed, which further increased speed and facilitates the joining of the many special purpose alloys that were developed during this period.
Limited in its early application to small or less important parts, welding in the second half of the 20th century was employed in fabrication too numerous to mention, such as ship, locomotives, rail and cars. The petroleum industry is a classic example. The cutting edge of the bit used to drill on wells consist of a hard weld metal fused to backing transportation to and from refinery is via all welded transport iron material.
Whenever a piece of apparatus is intended to contain a liquid or gas, welding is the logical method of fabrication. As such, it has almost completely replaced other method. Welding as of course by no means of confined to wide application where leak tightness is involved. In the conventional body on frame automobile, there are some 8,000 to 10,000 resistance welds and up to 40ft of arc welding.
Building and bridges can be erected y welding with a saving of (10%) to (20%) in the amount of steel requires. The proportion of structures erected by welding was increasing in the second half of the 20th century and trend appeared likely to continue.
The processes of welding may be divided into four processes
- Forge welding
- Arc welding
- Gas welding
- Resistance welding
Arc welding will be expansiated on, in accordance to the title of the project.
1.3 OBJECTIVES OF THE PRESENT WORK
- To find alternative replacement replacement for the imported models.
- To make it affordable at relatively cheap price.
- To further understand the fabrication or construction/working principle of the machine.
- To acquire basic understanding of operating and welding of transformer.
1.4 SCOPE OF ELECTRICC ARC WELDING MACHINE
The machine is designed to be supplied with an input ranging from 220volt to 240 volt. A good weld must be strong as parent metal. The scope of welding process in the modern industries has taken a greater dimension more than the previous year. Today the science and act of welding involves a wide range of process and procedure applicable to materials of any thickness and shape. These may range from more a very thin electronic component to a large machine and structure. The arc produces a temperature of about 3600oc at the top armed melts part of the metal being welded and part of electrode. This produces a pool of molten metal that cools and solidifies behind electrode as it moved along the joint.
This electric arc welding machine is a heavy duty machine which is capable of welding 12 gauges of electrodes while in operation.
CHAPTER TWO
2.0 ANALYSIS OF ALTERNATE METHOD OF WELDING AND CHOICE OF BEST METHOD
2.1 ALTERNATIVES TO ELECTRIC ARC WELDING MACHINE
2.1.1 JOINING PROCESS
Semi conductor packaging is complex process of forming many different parts and piece together. To achieve this, semi conductor packaging employs a multitude of joining process.
The ability to choose is appropriate as every step of packaging is critical in producing highly reliable packaging for semi conductor device…
Electricc Arc Welding Machine. (n.d.). UniTopics. https://www.unitopics.com/project/material/electricc-arc-welding-machine/
“Electricc Arc Welding Machine.” UniTopics, https://www.unitopics.com/project/material/electricc-arc-welding-machine/. Accessed 18 January 2025.
“Electricc Arc Welding Machine.” UniTopics, Accessed January 18, 2025. https://www.unitopics.com/project/material/electricc-arc-welding-machine/
Here’s a typical structure for Electricc Arc Welding Machine research projects:
- The title page of Electricc Arc Welding Machine should include the project title, your name, institution, and date.
- The abstract of Electricc Arc Welding Machine should be a summary of around 150-250 words and should highlight the main objectives, methods, results, and conclusions.
- The introduction of Electricc Arc Welding Machine should provide the background information, outline the research problem, and state the objectives and significance of the study.
- Review existing research related to Electricc Arc Welding Machine, identifying gaps the study aims to fill.
- The methodology section of Electricc Arc Welding Machine should describe the research design, data collection methods, and analytical techniques used.
- Present the findings of the Electricc Arc Welding Machine research study using tables, charts, and graphs to illustrate key points.
- Interpret Electricc Arc Welding Machine results, discussing their implications, limitations, and potential areas for future research.
- Summarize the main findings of the Electricc Arc Welding Machine study and restate its significance.
- List all the sources you cited in Electricc Arc Welding Machine project, following a specific citation style (e.g., APA, MLA, Chicago).