Development Of High Strength Concrete From Recycled Aggregate Concrete

ABSTRACT

The aim for this project was to determine the strength and durability characteristics of high strength
structural concrete by using recycled coarse aggregates, which will give a better understanding on the
properties of concrete with recycled aggregates. To develop a mix design method to achieve high
strength of 80N/mm2
using RCA, To evaluate the compressive strength at different replacement level of
cement with metakaolin, To determine the optimum replacement of RCA with natural aggregate. The
scope of this project was to investigate the possibility of using low cost recycled coarse aggregates as
an alternative material to coarse aggregate in high strength structural concrete. The experimental
investigation were carried out using detailed strength and durability related tests such as compressive
strength test of cubes, split tensile strength test of cylinders, test for saturated water absorption and
porosity. The tests were conducted by replacing the coarse aggregates in high strength concrete mixes
by 0, 10, 20, 30, and 40 of recycled coarse aggregates. I was able to obtain a high strength of 82N/mm2
at 0% RCA, 78N/mm2 at 10% RCA, 70N/mm2 at 20% RCA, 67N/mm2 at 30% RCA and 60N/mm2 at
40% RCA. A 40% replaced mix with reduced w/c ratio was also tested. From the experimental
investigation it was found that recycled coarse aggregates can be used for making high strength
concretes by adjusting the w/c ratio and admixture contents of the mix

 

TABLE OF CONTENTS

ABSTRACT
DECLARATION
CERTIFICATION
DEDICATION
ACKNOWLEDGEMENT
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF PLATES
ACRONYMS viii

CHAPTER 1:
INTRODUCTION Pages
1.1 Background of Study 1
1.2 Justification of problem 5
1.3 Statement of problem 6
1.4 Project Aim/Objectives 6
1.5 Methodology 7
1.6 Scope of the work 7
1.7 Delimitation of the work 8
1.8 Significance of Study 8
1.9 Layout of Project 8

CHAPTER 2:
LITERATURE REVIEW
2.1.1 General 10
2.1.2 Constituent Materials in Concrete 11
2.1.3 Concrete Waste and Concrete Recycling 11
2.1.4 Properties Of Recycled Aggregate 13
2.1.4.1 Physical 13
2.1.4.1.1 Adhered paste and mortar 13
2.1.4.1.2 Bulk density 14
2.1.4.1.3 Specific gravity 16
2.1.4.1.4. Water absorption 16
2.1.4.2 Mechanical 18
2.1.4.2.1. Abrasion 18
2.1.4.3. Durability properties 18
2.1.4.3.1. Sulphate soundness 18
2.1.5 Recommendations 19
2.1.6 Mix design 21
2.1.7 Properties of Recycled Aggregate Concrete 22
2.1.7.1 Properties of fresh concrete 22
2.1.7.1.1 Water demand and workability 23
2.1.7.1.2 W/C Ratio 25
2.1.7.1.3 Cement quantity 25
2.1.7.1.4 Density and air content 25
2.1.7.1.5 New interfacial transition zone 26
2.1.8 Mechanical Properties of Recycled Aggregate Concrete 29
2.1.8.1 Compression 29
2.1.8.1.1. Behavior of recycled aggregate concrete produced with natural coarse
aggregate and recycled fine aggregate. 29
2.1.8.1.2. Behaviour of recycled aggregate concrete produced with recycled
coarse aggregate and recycled fine aggregate 30
2.1.8.1.3. Behaviour of recycled aggregate concrete produced with
recycled coarse aggregate and natural sand 30
2.1.8.2 Behavior of recycled aggregate concrete in tension 38
2.1.8.3. Behavior of recycled aggregate concrete in flexure 39
2.1.8.4 Stress strain behavior of recycled aggregate concrete 40
2.1.8.5 Young‟s modulus 42
2.1.10 Sound Absorption Characteristics 43
2.1.11 Durability Properties 44
2.1.11.1 Permeability and water absorption 45
2.1.11.2 Freezing and thawing resistance 47
2.1.11.3 Chloride diffusion/Penetration 49
2.1.11.5 Water Sorptivity 51
2.1.11.6 Reinforcement corrosion 52
2.1.11.7 Creep, elastic shrinkage and drying shrinkage 53
2.1.12 Economic Comparison Concrete Recycling 54
2.1.13 Structural Properties 56
2.1.13.1 Flexural behaviour of recycled aggregate concrete 56
2.1.13.2 Shear behaviour of recycled aggregate concrete 57
2.1.13.3 Compression behaviour of recycled aggregate concrete 58
2.1.13.4 Bond behavior of recycled aggregate concrete with steel rebar‟s 59
2.1.13.5 Seismic performance of recycled aggregate concrete 60
2.1.13.6 Glass fiber reinforced recycled aggregate concrete 60

CHAPTER 3:
MATERIALS AND METHODS
3.0 Materials 37
3.1 Material Classification 37
3.2 Classification of Aggregates 39
3.3 Mix Design 39
3.4 Experimental Procedures 40
3.5 Sieve Analysis 42
3.6 Apparatus and Test Procedure of Sieve Analysis 43
3.7 Indirect Tensile Strength Test 44
3.8 Apparatus and Test Procedure of Indirect Tensile Strength Test 45
3.9 Instrumentation and laboratory Testing 47
3.1.1 Indirect Tensile Test 49
3.1.2 Curing of Concrete Specimens 50
3.1.3 Calculation of mix Design 51

CHAPTER 4:
RESULT AND DISCUSSION
4.1 Introduction 52
4.2 Sieve Analysis Test 52
4.3 Slump Test Result and Analysis 57
4.4 Compression Strength Test Result and Analysis 58
4.5 Tensile Strength Test Result and Analysis 59

CHAPTER 5:
CONCLUSION AND RECOMMENDATION
5.1: Conclusion 62
5.2: Recommendations 63
REFERENCES
APPENDICES

APA

Development Of High Strength Concrete From Recycled Aggregate Concrete. (n.d.). UniTopics. https://www.unitopics.com/project/material/development-of-high-strength-concrete-from-recycled-aggregate-concrete/

MLA

“Development Of High Strength Concrete From Recycled Aggregate Concrete.” UniTopics, https://www.unitopics.com/project/material/development-of-high-strength-concrete-from-recycled-aggregate-concrete/. Accessed 19 September 2024.

Chicago

“Development Of High Strength Concrete From Recycled Aggregate Concrete.” UniTopics, Accessed September 19, 2024. https://www.unitopics.com/project/material/development-of-high-strength-concrete-from-recycled-aggregate-concrete/

WORK DETAILS

Chapters:
5
Pages:
95
Words:
2086

Here’s a typical structure for Development Of High Strength Concrete From Recycled Aggregate Concrete research projects:

  • The title page of Development Of High Strength Concrete From Recycled Aggregate Concrete should include the project title, your name, institution, and date.
  • The abstract of Development Of High Strength Concrete From Recycled Aggregate Concrete should be a summary of around 150-250 words and should highlight the main objectives, methods, results, and conclusions.
  • The introduction of Development Of High Strength Concrete From Recycled Aggregate Concrete should provide the background information, outline the research problem, and state the objectives and significance of the study.
  • Review existing research related to Development Of High Strength Concrete From Recycled Aggregate Concrete, identifying gaps the study aims to fill.
  • The methodology section of Development Of High Strength Concrete From Recycled Aggregate Concrete should describe the research design, data collection methods, and analytical techniques used.
  • Present the findings of the Development Of High Strength Concrete From Recycled Aggregate Concrete research study using tables, charts, and graphs to illustrate key points.
  • Interpret Development Of High Strength Concrete From Recycled Aggregate Concrete results, discussing their implications, limitations, and potential areas for future research.
  • Summarize the main findings of the Development Of High Strength Concrete From Recycled Aggregate Concrete study and restate its significance.
  • List all the sources you cited in Development Of High Strength Concrete From Recycled Aggregate Concrete project, following a specific citation style (e.g., APA, MLA, Chicago).