ABSTRACT
An FM transmitter is an electronic device which, with the aid of an antenna, produces radio waves. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves.
FM transmitter is basically a VHF colipits oscillator capable of transmitting sound or music to any standard FM receiver. The circuit works on a D.C source which makes it for a pure rectification. FM transmitter also has a capacitor microphone which picks up very weak sound signals.
This FM transmitter circuit uses four radio frequency stages: a VHF oscillator built around transistor BF494 (T1), a preamplifier built around transistor BF200 (T2), a driver built around transistor 2N2219 (T3) and a power amplifier built around transistor 2N3866 (T4).
A condenser microphone is connected at the input of the oscillator. Working of the transmitter circuit is simple. When you speak near the microphone, frequency-modulated signals are obtained at the collector of oscillator transistor T1. The FM signals are amplified by the VHF preamplifier and the pre-driver stage
TABLE OF CONTENTS
TABLE OF CONTENT
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENT
CHAPTER ONE
1.0 INTRODUCTION
1.1 PURPOSE OF THE PROJECT
1.2 OBJECTIVE OF THE PROJECT
1.3 LIMITATIONS OF THE PROJECT
1.4 SCOPE OF THE PROJECT
1.5 APPLICATION OF THE PROJECT
1.6 DEFINITION OF TERMS
1.7 PROJECT ORGANISATION
CHAPTER TWO
2.0 LITERATURE REVIEW
2.1 HISTORITICAL BACKGROUND OF THE PROJECT
2.2 REVIEW OF PARTS OF RADIO TRANSMITTER
2.3 REVIEW OF FM BROADCAST BANDS
2.4 MODULATION AND DEMODULATION
2.5 PRE-EMPHASIS AND DE-EMPHASIS
2.6 REVIEW OF MODULATION CHARACTERISTICS
CHAPTER THREE
3.0 CONSTRUCTION
3.1 BASICS OF FM TRANSMITTER
3.2 BLOCK DIAGRAM OF AN FM TRANSMITTER
3.3 FUNCTION OF FM TRANSMITTER BLOCK
3.4 CIRCUIT DIAGRAM OF THE SYSTEM
3.5 CIRCUIT PARTS
3.6 CIRCUIT OPERATION
3.7 DESCRIPTION OF COMPONENTS USED
CHAPTER FOUR
4.0 RESULT ANALYSIS
4.1 CONSTRUCTION PROCEDURE AND TESTING
4.2 CASING AND PACKAGING
4.3 ASSEMBLING OF SECTIONS
4.4 TESTING OF SYSTEM OPERATION
4.5 INSTALLATION OF THE COMPLETED DESIGN
4.6 SYSTEM TROUBLESHOOTING METHOD
4.7 COST ANALYSIS
CHAPTER FIVE
5.1 CONCLUSION
5.1 RECOMMENDATION
5.2 BIBLIOGRAPHY
CHAPTER ONE
1.0 INTRODUCTION
In electronics and telecommunications a transmitter or radio transmitter is an electronic device which, with the aid of an antenna, produces radio waves. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. In addition to their use in broadcasting, transmitters are necessary component parts of many electronic devices that communicate by radio, such as cell phones, wireless computer networks, Bluetooth enabled devices, garage door openers, two-way radios in aircraft, ships, and spacecraft, radar sets, and navigational beacons. The term transmitter is usually limited to equipment that generates radio waves for communication purposes; or radiolocation, such as radar and navigational transmitters. Generators of radio waves for heating or industrial purposes, such as microwave ovens or diathermy equipment, are not usually called transmitters even though they often have similar circuits.
The term is popularly used more specifically to refer to a broadcast transmitter, a transmitter used in broadcasting, as in FM radio transmitter. This usage usually includes the transmitter proper, the antenna, and often the building it is housed in.
A transmitter can be a separate piece of electronic equipment, or an electrical circuit within another electronic device. A transmitter and receiver combined in one unit is called a transceiver. The term transmitter is often abbreviated “XMTR” or “TX” in technical documents. The purpose of most transmitters is radio communication of information over a distance. The information is provided to the transmitter in the form of an electronic signal, such as an audio (sound) signal from a microphone. The transmitter combines the information signal to be carried with the radio frequency signal which generates the radio waves, which is often called the carrier. This process is called modulation. The information can be added to the carrier in several different ways, in different types of transmitter.
In a frequency modulation (FM) transmitter, it is added by varying the radio signal’s frequency slightly. Many other types of modulation are used.
The antenna may be enclosed inside the case or attached to the outside of the transmitter, as in portable devices such as cell phones, walkie-talkies, and garage door openers. In more powerful transmitters, the antenna may be located on top of a building or on a separate tower, and connected to the transmitter by a feed line, that is a transmission line.
1.1 PURPOSE OF THE PROJECT
The main purpose of this work is to construct a device that will allow music or other audio content from a portable media player, CD player or other portable audio system to be played through a nearby FM radio. It can either be a capability built into a portable media player, or a portable appliance that plugs into the headphone jack or proprietary output port of a portable media player or video device. The sound is then broadcast through the transmitter on an FM broadcast band frequency and picked up by the receiver. The purpose is generally to allow portable audio devices to make use of the better sound quality of a home audio system or car stereo without requiring a wired connection between them.
The FM transmitter plugs into the audio output of audio devices and converts the audio output into an FM radio signal, which can then be picked up by appliances such as car or portable radios.
1.2 OBJECTIVE OF THE PROJECT
The objective of this work is to design and construct an FM transmitter which transmits a frequency modulated signal to an fm radio. That is, to construct a device that can broadcast signals on an FM broadcast band and picked up by the receiver.
1.3 LIMITATIONS OF THE PROJECT
The relatively low power output of FM transmitters sometimes makes it unsuitable for use in some large urban areas because of the number of other radio signals. This is compounded by the fact that strong FM signals can bleed over into neighboring frequencies making the frequencies unusable with the transmitter. Removing a car’s radio antenna has been found to significantly improve transmitter reception. Some frequencies below 88.1 have even been supported as reception frequencies on some car stereos, and some indegeneous FM transmitters even take advantage of those unused frequencies which are generally more reliable as no frequency below 88.1 is used for mainstream broadcasters in the US.
- Some models which connect via ports other than the headphone jack have no means of controlling the volume, which can force the sound to transmit out from the device harshly (causing over modulation, audio distortion and possible radio interference), or too low. In theory a device could use an automatic level control or audio limiter circuit to overcome this problem although there are few (if any) devices with such a facility available out on the market yet.
1.4 SCOPE OF THE PROJET
- FM transmitter is basically a VHF colipits oscillator capable of transmitting sound or music to any standard FM receiver. The circuit works on a D.C source which makes it for a pure rectification. FM transmitter also has a capacitor microphone which picks up very weak sound signals, and discrete components such as: Transistor, Diode, Resistor, Capacitor and Inductor.
- This project transmits frequency on 100MHz± 5%. The transmitting distance is l00metres. It is powered with 5volt – 15volts D.C battery using suitable F.M receiver tuned to the transmitting frequency of this project. F.M Transmitter can be used as cordless microphones, mobile phone and for public address purposes.
1.5 APPLICATION OF THE PROJECT
- FM transmitters used in many different environments. Some of the more popular uses are churches, sporting events, fitness centers, homes, cars, correctional facilities and holiday light shows.
1.6 SIGNIFICANCE OF THE STUDY
The project signifies a lot in the electronic communication system which telecommunication is the vital aspect which is usually demonstrated through radio communication system the frequency modulation transmitter is applied in a lot of instance frequency modulation is used in FM radio stations scattered all over the country whose advantage is paramount compared to its counterpart AM modulation frequency modulation transmitted is equally used in a miniaturized from as wireless morpheme.
1.7 DEFINITION OF TERMS
FM – Frequency Modulation
VHF – Very High Frequency (30MHz to 300MHz)
UHF – Ultra High Frequency (300MHz to 3GHz)
VFO – Variable Frequency Oscillator
VCO – Voltage Controlled Oscillator
PLL – Phase Locked Loop
Oscillator – device that generates a frequency
1.8 PROJECT WORK ORGANISATION
The various stages involved in the development of this project have been properly put into five chapters to enhance comprehensive and concise reading. In this project thesis, the project is organized sequentially as follows:
Chapter one of this work is on the introduction to an fm transmitter. In this chapter, the background, significance, objective limitation and problem of an fm transmitter were discussed.
Chapter two is on literature review of an fm transmitter. In this chapter, all the literature pertaining to this work was reviewed.
Chapter three is on design methodology. In this chapter all the method involved during the design and construction were discussed.
Chapter four is on testing analysis. All testing that result accurate functionality was analyzed.
Chapter five is on conclusion, recommendation and references.
Design And Construction Of A Medium Power FM Transmitter. (n.d.). UniTopics. https://www.unitopics.com/project/material/design-and-construction-of-a-medium-power-fm-transmitter/
“Design And Construction Of A Medium Power FM Transmitter.” UniTopics, https://www.unitopics.com/project/material/design-and-construction-of-a-medium-power-fm-transmitter/. Accessed 10 November 2024.
“Design And Construction Of A Medium Power FM Transmitter.” UniTopics, Accessed November 10, 2024. https://www.unitopics.com/project/material/design-and-construction-of-a-medium-power-fm-transmitter/
Here’s a typical structure for Design And Construction Of A Medium Power FM Transmitter research projects:
- The title page of Design And Construction Of A Medium Power FM Transmitter should include the project title, your name, institution, and date.
- The abstract of Design And Construction Of A Medium Power FM Transmitter should be a summary of around 150-250 words and should highlight the main objectives, methods, results, and conclusions.
- The introduction of Design And Construction Of A Medium Power FM Transmitter should provide the background information, outline the research problem, and state the objectives and significance of the study.
- Review existing research related to Design And Construction Of A Medium Power FM Transmitter, identifying gaps the study aims to fill.
- The methodology section of Design And Construction Of A Medium Power FM Transmitter should describe the research design, data collection methods, and analytical techniques used.
- Present the findings of the Design And Construction Of A Medium Power FM Transmitter research study using tables, charts, and graphs to illustrate key points.
- Interpret Design And Construction Of A Medium Power FM Transmitter results, discussing their implications, limitations, and potential areas for future research.
- Summarize the main findings of the Design And Construction Of A Medium Power FM Transmitter study and restate its significance.
- List all the sources you cited in Design And Construction Of A Medium Power FM Transmitter project, following a specific citation style (e.g., APA, MLA, Chicago).